ga('set', 'userId', {{USER_ID}}); // Set the user ID using signed-in user_id.
shadow

Biomarker-indicated extent of oxidation of plant-derived organic carbon (OC) in relation to geomorphology in an arsenic contaminated Holocene aquifer, Cambodia


  • 1.

    WHO, W. H. O. Guidelines for Drinking-Water Quality, Fourth edition. 1, 541 (2011).

  • 2.

    Ravenscroft, P., Brammer, H. & Richards, K. Arsenic Sollution: A Global Synthesis. (Wiley-Blackwell, 2009).

  • 3.

    Smedley, P. L. & Kinniburgh, D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochemistry
    17, 517–568 (2002).

  • 4.

    Smith, A. H., Lingas, E. O. & Rahman, M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency: RN – Bull. W.H.O., v. 78, p. 1093–1103. Bull. World Heal. Organ.
    78, 1093–1103 (2000).

  • 5.

    Polya, D. A. & Charlet, L. Environmental science: Rising arsenic risk? Nat. Geosci.
    2, 383–384 (2009).

  • 6.

    Charlet, L. & Polya, D. A. Arsenic in shallow, reducing groundwaters in SouthernAsia: An environmental health disaster. Elements
    2, 91–96 (2006).

  • 7.

    Bhattacharya, P., Chatterjee, D. & Jacks, G. Occurrence of Arsenic-contaminatedGroundwater in Alluvial Aquifers from Delta Plains, Eastern India: Options for Safe Drinking Water Supply. Int. J. Water Resour. Dev.
    13, 79–92 (1997).

  • 8.

    Islam, F. S. et al. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature
    430, 68–71 (2004).

  • 9.

    Polya, D. A. et al. Arsenic hazard in shallow Cambodian groundwaters. Mineral. Mag.
    69, 807–823 (2005).

  • 10.

    Sovann, C. & Polya, D. A. Improved groundwater geogenic arsenic hazard map for Cambodia. Environ. Chem.
    11, 595–607 (2014).

  • 11.

    Rowland, H. A. L., Polya, D. A., Lloyd, J. R. & Pancost, R. D. Characterisation of organic matter in a shallow, reducing, arsenic-rich aquifer, West Bengal. Org. Geochem.
    37, 1101–1114 (2006).

  • 12.

    Rowland, H. A. L. et al. The control of organic matter on microbially-mediated iron reduction and arsenic release in shallow alluvial aquifers. Geobiology
    5, 281–292 (2007).

  • 13.

    Rowland, H. A. L. et al. The Role of Indigenous Microorganisms in the Biodegradation of Naturally Occurring Petroleum, the Reduction of Iron, and the Mobilization of Arsenite from West Bengal. J. Environ. Qual.
    38, 1598–1607 (2009).

  • 14.

    van Dongen, B. E. et al. Hopane, sterane and n-alkane distributions in shallow sediments hosting high arsenic groundwaters in Cambodia. Appl. Geochemistry
    23, 3047–3058 (2008).

  • 15.

    Quicksall, A. N., Bostick, B. C. & Sampson, M. L. Linking organic matter deposition and iron mineral transformations to groundwater arsenic levels in the Mekong delta, Cambodia. Appl. Geochemistry
    23, 3088–3098 (2008).

  • 16.

    Al Lawati, W. M. et al. Characterisation of organic matter and microbial communities in contrasting arsenic-rich Holocene and arsenic-poor Pleistocene aquifers, Red River Delta, Vietnam. Appl. Geochemistry
    27, 315–325 (2012).

  • 17.

    Al Lawati, W. M. et al. Characterisation of organic matter associated with groundwater arsenic in reducing aquifers of southwestern Taiwan. J. Hazard. Mater.
    262, 970–979 (2013).

  • 18.

    Neumann, R. B., Pracht, L. E., Polizzotto, M. L., Badruzzaman, A. B. M. & Ali, M. A. Biodegradable Organic Carbon in Sediments of an Arsenic-Contaminated Aquifer in Bangladesh. Environ. Sci. Technol. Lett.
    1, 221–225 (2014).

  • 19.

    Eiche, E. et al. Origin and availability of organic matter leading to arsenic mobilisation in aquifers of the Red River Delta, Vietnam. Appl. Geochemistry
    77, 184–193 (2015).

  • 20.

    Stuckey, J. W. et al. Peat formation concentrates arsenic within sediment deposits of the Mekong Delta. Geochim. Cosmochim. Acta
    149, 190–205 (2015).

  • 21.

    Stuckey, J. W., Schaefer, M. V., Kocar, B. D., Benner, S. G. & Fendorf, S. Arsenic release metabolically limited to permanently water-saturated soil in Mekong Delta. Nat. Geosci.
    9, 70–76 (2015).

  • 22.

    Lawson, M. et al. Pond-derived organic carbon driving changes in arsenic hazard found in asian groundwaters. Environ. Sci. Technol.
    47, 7085–7094 (2013).

  • 23.

    Lawson, M., Polya, D. A., Boyce, A. J., Bryant, C. & Ballentine, C. J. Tracing organic matter composition and distribution and its role on arsenic release in shallow Cambodian groundwaters. Geochim. Cosmochim. Acta
    178, 160–177 (2016).

  • 24.

    Smith, J. G. Organic chemistry. (McGraw-Hill, 2011).

  • 25.

    Vonk, J. E., van Dongen, B. E. & Gustafsson, Ö. Lipid biomarker investigation of the origin and diagenetic state of sub-arctic terrestrial organic matter presently exported into the northern Bothnian Bay. Mar. Chem.
    112, 1–10 (2008).

  • 26.

    van Dongen, B. E., Talbot, H. M., Schouten, S., Pearson, P. N. & Pancost, R. D. Well preserved Palaeogene and Cretaceous biomarkers from the Kilwa area, Tanzania. Org. Geochem.
    37, 539–557 (2006).

  • 27.

    Poynter, J. & Eglinton, G. Molecular composition of three sediments from hole 717C: The Bengal fan. Proc. Ocean Drill. Program, Sci. Results
    116, 155–161 (1990).

  • 28.

    Marzi, R., Torkelson, B. E. & Olson, R. K. A revised carbon preference index. Org. Geochem.
    20, 1303–1306 (1993).

  • 29.

    Bray, E. & Evans, E. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta
    22, 2–15 (1961).

  • 30.

    Lamb, A. L., Wilson, G. P. & Leng, M. J. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews
    75, 29–57 (2006).

  • 31.

    Feldman, P. R. & Rosenboom, J. W. Cambodia drinking water quality assessment. Phnom Penh, Cambodia: World Health Organisation of the UN [WHO] in cooperation with Cambodian Ministry of Rural Development and the Ministry of Industry, Mines and Energy (2001).

  • 32.

    Rowland, H. A. L., Gault, A. G., Lythgoe, P. & Polya, D. A. Geochemistry of aquifer sediments and arsenic-rich groundwaters from Kandal Province, Cambodia. Appl. Geochemistry
    23, 3029–3046 (2008).

  • 33.

    Buschmann, J., Berg, M. & Stengel, C. Arsenic and Manganese Contamination of Drinking Water Resources in Cambodia: Coincidence of Risk Areas with Low Relief Topography. Environ. Sci. Technol.
    41, 2146–2152 (2007).

  • 34.

    Feldman, P., Rosenboom, J. & Saray, M. Assessment of the chemical quality of drinking water in Cambodia. J. Water (2007).

  • 35.

    Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M. & Fendorf, S. Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature
    454, 505–508 (2008).

  • 36.

    Richards, L. A. et al. High resolution profile of inorganic aqueous geochemistry and key redox zones in an arsenic bearing aquifer in Cambodia. Sci. Total Environ.
    590, 540–553 (2017).

  • 37.

    Hori, H. The Mekong: Environment and Development. (United Nations University Press, 2000).

  • 38.

    Tamura, T. et al. Depositional facies and radiocarbon ages of a drill core from the Mekong River lowland near Phnom Penh, Cambodia: Evidence for tidal sedimentation at the time of Holocene maximum flooding. J. Asian Earth Sci.
    29, 585–592 (2007).

  • 39.

    Nguyen, V., Ta, T. & Tateishi, M. Late holocene depositional environments and coastal evolution of the Mekong River Delta, Southern Vietnam. J. Asian Earth Sci.
    18, 427–439 (2000).

  • 40.

    Ta, T. K. O. et al. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam. Quat. Sci. Rev.
    21, 1807–1819 (2002).

  • 41.

    Tamura, T. et al. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland. Quat. Sci. Rev.
    28, 327–344 (2009).

  • 42.

    Penny, D. The Holocene history and development of the Tonle Sap, Cambodia. Quat. Sci. Rev.
    25, 310–322 (2006).

  • 43.

    Day, M. B. et al. Middle to late Holocene initiation of the annual flood pulse in Tonle Sap Lake, Cambodia. J. Paleolimnol.
    45, 85–99 (2011).

  • 44.

    Papacostas, N. C., Bostick, B. C., Quicksall, A. N., Landis, J. D. & Sampson, M. Geomorphic controls on groundwater arsenic distribution in the Mekong River Delta, Cambodia. Geology
    36, 891–894 (2008).

  • 45.

    Richards, L. A., Magnone, D., van Dongen, B. E., Ballentine, C. J. & Polya, D. A. Use of lithium tracers to quantify drilling fluid contamination for groundwater monitoring in Southeast Asia. Appl. Geochemistry
    63, 190–202 (2015).

  • 46.

    Uhlemann, S., Kuras, O., Richards, L. A. & Polya, D. A. Geophysical and geotechnical characterization of the sedimentological setting of the Kandal Province, Cambodia. In Water Resources in Cambodia and Southeast Asia: Challenges, Research and Impact (2015).

  • 47.

    Uhlemann, S., Kuras, O., Richards, L. A., Naden, E. & Polya, D. A. Electrical resistivity tomography determines the spatial distribution of clay layer thickness and aquifer vulnerability, Kandal Province, Cambodia. J. Asian Earth Sci.
    147, 402–414 (2017).

  • 48.

    Hjulstrom, F. Transportation of detritus by moving water: Part 1. Transportation. https://doi.org/10.2110/pec.55.04 (1939)

  • 49.

    Ellis, E. E., Keil, R. G., Ingalls, A. E., Richey, J. E. & Alin, S. R. Seasonal variability in the sources of particulate organic matter of the Mekong River as discerned by elemental and lignin analyses. J. Geophys. Res. Biogeosciences
    117 (2012).

  • 50.

    Rizoulis, A. et al. Microbially mediated reduction of Fe III and As V in Cambodian sediments amended with 13 C-labelled hexadecane and kerogen. Environ. Chem.
    11, 538–546 (2014).

  • 51.

    Kocar, B. D. et al. Integrated biogeochemical and hydrologic processes driving arsenic release from shallow sediments to groundwaters of the Mekong delta. Appl. Geochemistry
    23, 3059–3071 (2008).

  • 52.

    Benner, S. G. et al. Groundwater flow in an arsenic-contaminated aquifer, Mekong Delta, Cambodia. Appl. Geochemistry
    23, 3072–3087 (2008).

  • 53.

    Buschmann, J., Berg, M., Stengel, C. & Winkel, L. Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environment (2008).

  • 54.

    Héry, M. et al. Microbial ecology of arsenic-mobilizing Cambodian sediments: Lithological controls uncovered by stable-isotope probing. Environ. Microbiol.
    17, 1857–1869 (2015).

  • 55.

    Richards, L. A. et al. Tritium Tracers of Rapid Surface Water Ingression into Arsenic-bearing Aquifers in the Lower Mekong Basin, Cambodia. Procedia Earth Planet. Sci.
    17, 845–848 (2017).

  • 56.

    Kocar, B., Benner, S. & Fendorf, S. Deciphering and predicting spatial and temporal concentrations of arsenic within the Mekong Delta aquifer. Environ. Chem. (2014).

  • 57.

    Rawlins, B. G., Webster, R., Tye, A. M., Lawley, R. & O’Hara, S. L. Estimating particle-size fractions of soil dominated by silicate minerals from geochemistry. Eur. J. Soil Sci.
    60, 116–126 (2009).

  • 58.

    Blott, S. & Pye, K. Blott Pye 2001 GRADISTAT. Earth Surf. Process. Landforms (2001).

  • 59.

    Xu, S., Anderson, R., Bryant, C. & Cook, G. Capabilities of the New SUERC 5MV AMS Facility for 14C Dating. Radiocarbon
    46, 59–64 (2004).

  • 60.

    Freeman, S. P. H. T., Dougans, A., McHargue, L., Wilcken, K. M. & Xu, S. Performance of the new single stage accelerator mass spectrometer at the SUERC. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms
    266, 2225–2228 (2008).

  • 61.

    Stuiver, M. & Polach, H. A. Reporting of C-14 data–discussion. Radiocarbon
    19, 355–363 (1977).

  • 62.

    Bronk Ramsey, C. & Lee, S. Recent and Planned Developments of the Program OxCal. Radiocarbon
    55, 720–730 (2013).

  • 63.

    Bronk Ramsey, C. Bayesian Analysis of Radiocarbon Dates. Radiocarbon
    51, 337–360 (2009).

  • 64.

    Reimer, P. J. et al. Intcal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years Cal Bp. Radiocarbon
    55, 1869–1887 (2013).

  • 65.

    R Core Development Team. R: a language and environment for statistical computing, 3.2.1. Document freely available on the internet at: http://www.r-project.org, https://doi.org/10.1017/CBO9781107415324.004 (2015)

  • 66.

    Ribeiro, P. J. J. & Diggle, P. J. geoR: Analysis of Geostatistical Data. R package version 1.7-5.1. (2015).

  • 67.

    Wickham., H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York (2009).



  • Source link

    %d bloggers like this:
    Skip to toolbar